

University of Stuttgart Department of Business Administration

Chair of Information Systems 1 – Prof. Dr. Hans-Georg Kemper

Applying TOGAF 9.1 to Develop Intelligent Traffic System Architectures

Jens F. Lachenmaier, M.Sc.

Kathrin Pfähler, B.Sc.

Outline

- Introduction to Intelligent Traffic Systems (ITS)
- Development of Reference Architectures for ITS
- Application of TOGAF 9.1
- Key Learnings and Takeaways
- Discussion

Introduction to Intelligent Traffic Systems (ITS)

- Overall traffic related goals (EU/Federal Ministry of Transport)
 - Reduced emissions
 - Reduced congestion
 - Safe and reliable travels
 - on-time transport
 - Smooth and uninterrupted traffic
- Sharing and distribution of information are key to achieve this

Source: Ruggedcom (2016)

Introduction to Intelligent Traffic Systems (ITS)

The benefit for traffic

Example of ITS – Traffic Management

Value chain

Development of Reference Architectures for ITS

Project Structure

Reference Architecture for individual traffic information

- Goals:
 - fulfill requirements of local and national/continental service providers
 - integrate heterogeneous grown systems from different sectors
 - concretion of the ITS-Architecture defined by project 0
 - optimal usage of street, traffic and travel information
 - support communication between cars and traffic infrastructure

Reference Architecture for individual traffic information

A	Filterophonen	
, 🕰 ^{A9}	Landkreis/Kreisfreie Stadt/Straßenklasse	Individual traffic information about:
, 🛕 A14	von 25.10.2016 x	 road work,
, 🛕 A14	bis 28.10.2016 x	detours
, 🛕 A38	Umleitungen bei allen Zoomstufen anzeigen	in a specific time period and federal state.
, 🛕 ^{A 9}	☑ Baustellen ☑ Umleitungen Salzgitter	
, 🛕 ^{A 9}		Sachsen-Anholt
, 🛕 A14	aderborn	
, 🛕 A 14	Gottingen	000
, 🛕 A9	Kassel	Leipzig

Source: Movi (2016)

Reference Architecture for cross competence traffic management

- Goals:
 - regional and nationwide cooperation and collaboration between road operators and service providers
 - harmonized ITS-services
 - deduction of requirements for cross competence traffic management
 - reduction of travel time
 - traffic jam prevention

ct.2: Project 1: Guidelines on ITS Architectures Project 3: RA for rosscompetence traffic management traffic information

Reference Architecture for cross competence traffic management

Reference Architecture for multimodal traffic information

Goals:

- sustainable compostion of value
- generic definition of single access points for multimodal services
- implementation of real ITS-Applications for content providers, service providers and service operators
- plan and adapt mulitimodal travel chains for wayfarers
- simplify booking and purchasing

Reference Architecture for multimodal traffic information

Source: Vielmobil (2016)

- Multimodal traffic information means the integration of the following information about:
 - traffic
 - public transport:
 - railway
 - bus
 - metro
 - flights
 - parking options
 - car-sharing
 - car rental
 - hotel booking
 - events

• ...

Multiple Companies involved – Focus on Interoperability

Why TOGAF 9.1?

- Existing solutions are focused primarily on data layer and data exchange
 - Data Marketplace (MDM Mobility Data Marketplace)
 - Datex II (a standard for information exchange between traffic management centers)
- Business Layer (e.g. processes, capabilities, roles) is missing

 \rightarrow TOGAF 9.1 provides a hollistic approach

Architectural Vision – Potential Approach

The challenge is using TOGAF not for developing an enterprise-wide architecture, but for developing an overall architecture for public projects.

- Developing guidelines for IT-Infrastructure and Technology is not feasible
- A solution could be a semantic layer where participating stakeholders have to provide access to their infrastructure or have to use certain interfaces

Application of TOGAF 9.1– Tayloring the ADM

Step	TOGAF	Tailoring ITS- Architectures	Instruction	Artefacts {c=catalogue, m=matrix, d=diagram}, o=other deliverables	Suggestions for ITS- Reference-Architectures	Suggestions for ITS- Architectures of real ITS-Services
1	Select Reference Models, Viewpoints, and Tools	Select Reference Models, Viewpoints, and Tools for describing the ITS- Business Architecture	Select Reference Models, Viewpoints, and Tools for describing the ITS-Business Architecture; Background information and Techniques for illustrating the ITS-value chain and value-added networks; illustrating ITS-Governance and ITS-Business Processes	Project-specific solution	Select Reference Models, Viewpoints, and Tools for describing the ITS-Business Architecture for a ITS- Service category	Select Reference Models, Viewpoints, and Tools for describing the ITS- Business Architecture for a ITS- Service category
2	Develop Baseline Business Architecture Description	Describing the Baseline ITS- Business Architecture	•Baseline of the ITS- Business Architecture •Template: Building Block ITS-Business Process	 Project-specific solution D:ITS-Role-matrix O: ITS-Governance C:ITS-Business Process D: ITS-Business Process diagram 	•Describing the Baseline ITS- Business Architecture	Describing the Baseline ITS-Business Architecture for a special ITS-Service Category

Application of TOGAF 9.1 – Meta Model ITS META MODEL

Application of TOGAF 9.1 – Architecture Building Blocks, Artifacts and Deliverables

Role			<rolename></rolename>		
Stereotype					
Goals					
Involvement in	processes				
Data Flow	Partner 1	Partne	er 2	Partner 3	
Partner 1	ХХХ	Route recommen- dation		Traffic situation (e.g. congestion)	
Partner 2	Planned arrival times	ХХХ			
Partner 3				XXX	

University of Stuttgart - Lachenmaier/Pfähler

Key Learnings and Takeaways

- Focus on (and challenges regarding)
 - · benefits of architectural work,
 - business architectures and
 - capabilites
- No access to the existing architectures from the different stakeholders → Gap Analysis not feasible
- Lots of (potential) stakeholders (e.g. railway, federal state, communes, different companies) have to be taken into account
- Additional steps/concepts needed: glossary, ITS domain

In general, it is possible to use TOGAF for developing company-crossing architectures.

University of Stuttgart Department of Business Administration

Chair of Information Systems 1 – Prof. Dr. Hans-Georg Kemper

Thank you!

Jens F. Lachenmaier, M.Sc.

e-mail lachenmaier@wi.uni-stuttgart.de phone +49 (0) 711 685-84183 fax +49 (0) 711 685-83197

University of Stuttgart Chair of Information Systems 1 Keplerstr. 17, 70174 Stuttgart

Kathrin Pfähler, B.Sc.

pfaehler@wi.uni-stuttgart.de +49 (0) 711 685-80032 +49 (0) 711 685-83197

University of Stuttgart Chair of Information Systems 1 Keplerstr. 17, 70174 Stuttgart